Advertisements
Advertisements
प्रश्न
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
उत्तर
It is given that A = 60°, B = 30°
Putting A = 60° and B = 30° in the given equation,
we get
tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`
⇒ tan( 60° - 30° ) = `(tan 60° - tan 30° )/(1 + tan 60°. tan 30° )`
⇒ tan 30° = `(sqrt3 - 1/sqrt3)/(1 + sqrt3 xx 1/sqrt3)`
⇒ `((3-1)/sqrt3)/2`
⇒ `(2/sqrt3)/(2/1)`
⇒ `2/(2sqrt3)`
⇒ `1/sqrt3`
⇒ LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Simplify : 2 sin30 + 3 tan45.
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.