Advertisements
Advertisements
प्रश्न
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
उत्तर
LHS = `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ `
= `cos θ/cos θ + cot θ/cot θ + sec θ/sec θ`
= 1 + 1 + 1
= 3
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
What is the value of 9cot2 θ − 9cosec2 θ?
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`