Advertisements
Advertisements
प्रश्न
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
`sqrt((1 - cos^2 theta) sec^2 theta)`
= `sqrt(sin^2 theta * sec^2 theta)` ...[∵ sin2θ + cos2θ = 1]
= `sqrt(sin^2 theta * 1/(cos^2 theta)` ...`[∵ sec theta = 1/costheta, tan theta = sin theta/cos theta]`
= `sqrt(tan^2 theta)`
= tan θ
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
`sec theta (1- sin theta )( sec theta + tan theta )=1`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If tan θ × A = sin θ, then A = ?
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If sin A = `1/2`, then the value of sec A is ______.