Advertisements
Advertisements
प्रश्न
If sin A = `1/2`, then the value of sec A is ______.
विकल्प
`2sqrt(3)`
`1/sqrt(3)`
`sqrt(3)`
1
उत्तर
If sin A = `1/2`, then the value of sec A is `underline(bb(2sqrt(3))`.
Explanation:
sin A = `1/2`
cos A = `sqrt(1 - sin^2A)`
= `sqrt(1 - 1/4)`
= `sqrt(3)/2`
sec A = `1/cosA`
= `1/(sqrt(3)/2)`
= `2/sqrt(3)`
sec A = `2/sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
If 2sin2β − cos2β = 2, then β is ______.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.