English

If sin A = 12, then the value of sec A is ______. - Mathematics

Advertisements
Advertisements

Question

If sin A = `1/2`, then the value of sec A is ______.

Options

  • `2sqrt(3)`

  • `1/sqrt(3)`

  • `sqrt(3)`

  • 1

MCQ
Fill in the Blanks

Solution

If sin A = `1/2`, then the value of sec A is `underline(bb(2sqrt(3))`.

Explanation:

sin A = `1/2`

cos A = `sqrt(1 - sin^2A)`

= `sqrt(1 - 1/4)`

= `sqrt(3)/2`

sec A = `1/cosA`

= `1/(sqrt(3)/2)`

= `2/sqrt(3)`

sec A = `2/sqrt(3)`

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Basic Sample

RELATED QUESTIONS

Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


Prove the following identities:

(1 – tan A)2 + (1 + tan A)2 = 2 sec2A


Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A


If m = ` ( cos theta - sin theta ) and n = ( cos theta +  sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


Prove the following identity : 

`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`


Prove the following identity : 

`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Prove that (sec θ + tan θ) (1 – sin θ) = cos θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×