Advertisements
Advertisements
Question
If sin A = `1/2`, then the value of sec A is ______.
Options
`2sqrt(3)`
`1/sqrt(3)`
`sqrt(3)`
1
Solution
If sin A = `1/2`, then the value of sec A is `underline(bb(2sqrt(3))`.
Explanation:
sin A = `1/2`
cos A = `sqrt(1 - sin^2A)`
= `sqrt(1 - 1/4)`
= `sqrt(3)/2`
sec A = `1/cosA`
= `1/(sqrt(3)/2)`
= `2/sqrt(3)`
sec A = `2/sqrt(3)`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ