English

Prove the following: tanA1+secA-tanA1-secA = 2cosec A - Mathematics

Advertisements
Advertisements

Question

Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A

Sum

Solution

L.H.S:

`tanA/(1 + sec A) - tanA/(1 - sec A)`

Taking LCM of the denominators,

= `(tanA(1 - sec A) - tanA(1 + sec A))/((1 + sec A)(1 - sec A))`

Since, (1 + sec A)(1 – sec A) = 1 – sec2A

= `(tan A(1 - secA - 1 - sec A))/(1 - sec^2A)`

= `(tan A(-2 sec A))/(1 - sec^2 A)`

= `(2 tan A  *sec A)/(sec^2 A - 1)`

Since,

sec2A – tan2A = 1

sec2A – 1 = tan2A

= `(2 tan A * sec A)/(tan^2 A)` 

Since, sec A = `(1/cosA)` and tan A = `(sinA/cosA)`

= `(2secA)/tanA = (2cosA)/(cosA sinA)`

= `2/sinA`

= 2 cosec A  ...`(∵ 1/sinA = "cosec" A)`

= R.H.S

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [Page 95]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 2 | Page 95

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`


From the figure find the value of sinθ.


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove that cot2θ × sec2θ = cot2θ + 1


If 3 sin θ = 4 cos θ, then sec θ = ?


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


Statement 1: sin2θ + cos2θ = 1

Statement 2: cosec2θ + cot2θ = 1

Which of the following is valid?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×