Advertisements
Advertisements
Question
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Solution
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
LHS = `(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1)`
= `(cosec^2A + cosecA + cosec^2A - cosecA)/(cosec^2A - 1)`
= `(2cosec^2A)/cot^2A(Q cosec^2A - 1 = cot^2A)`
= `(2/sin^2A)/(cos^2A/sin^2A) = 2/cos^2A = 2sec^2A`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Choose the correct alternative:
1 + tan2 θ = ?
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that sec2θ − cos2θ = tan2θ + sin2θ
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`