Advertisements
Advertisements
Question
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Solution
LHS = `(1 + cosA)/(1 - cosA)`
= `(1 + 1/secA)/(1 - 1/secA) = (secA + 1)/(secA - 1)`
= `(secA + 1)/(secA - 1) . (secA - 1)/(secA - 1)`
= `(sec^2A - 1)/(secA - 1)^2 = tan^2A/(secA - 1)^2` (`Q sec^2A - 1 = tan^2A`)
APPEARS IN
RELATED QUESTIONS
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.