Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
उत्तर
LHS = `(1 + cosA)/(1 - cosA)`
= `(1 + 1/secA)/(1 - 1/secA) = (secA + 1)/(secA - 1)`
= `(secA + 1)/(secA - 1) . (secA - 1)/(secA - 1)`
= `(sec^2A - 1)/(secA - 1)^2 = tan^2A/(secA - 1)^2` (`Q sec^2A - 1 = tan^2A`)
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Choose the correct alternative:
cot θ . tan θ = ?