Advertisements
Advertisements
प्रश्न
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
उत्तर
LHS = `sqrt((1 - cos θ)/(1 + cos θ) xx (1 - cos θ)/(1 - cos θ))`
= `sqrt((1 - cos θ)^2/(1 - cos^2θ))`
= `(1 - cos θ)/(sqrt(1 - cos^2θ))`
= `(1 - cos θ)/(sqrt(sin^2θ))`
= `(1 - cos θ)/(sin θ)`
= `(1)/(sin θ) - (cos θ)/(sin θ)`
= cosec θ - cot θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
cos4 A − sin4 A is equal to ______.
(sec A + tan A) (1 − sin A) = ______.
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.