Advertisements
Advertisements
Question
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Solution
LHS = `sqrt((1 - cos θ)/(1 + cos θ) xx (1 - cos θ)/(1 - cos θ))`
= `sqrt((1 - cos θ)^2/(1 - cos^2θ))`
= `(1 - cos θ)/(sqrt(1 - cos^2θ))`
= `(1 - cos θ)/(sqrt(sin^2θ))`
= `(1 - cos θ)/(sin θ)`
= `(1)/(sin θ) - (cos θ)/(sin θ)`
= cosec θ - cot θ
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If `secθ = 25/7 ` then find tanθ.
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ