English

If `Secθ = 25/7 ` Then Find Tanθ. - Geometry Mathematics 2

Advertisements
Advertisements

Question

If `secθ = 25/7 ` then find tanθ.

Solution

`1 + tan^2θ = sec^2θ`

`1 + tan^2θ =(25/7)^2`

`∴ tan^2θ =625/49- 1`

`∴ tan^2θ =(625-49)/49`

`∴ tan^2θ =576/49`

`∴ tanθ =24/7`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) Balbharati Model Question Paper Set 1

RELATED QUESTIONS

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×