Advertisements
Advertisements
Question
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Solution
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2`
= `(sinθ/cosθ + 1/cosθ)^2 + (sinθ/cosθ - 1/cosθ)^2`
= `((sinθ + 1)/cosθ)^2 + ((sinθ - 1)/cosθ)^2`
= `(sinθ + 1)^2/(cos^2θ) + (sinθ - 1)^2/cos^2θ`
= `((sinθ + 1)^2 + (sinθ - 1)^2)/cos^2A`
= `(sin^2θ + 1 + 2sinθ + sin^2θ + 1 - 2sinθ)/(1 - sin^2θ)`
= `(2(1 + sin^2θ))/(1 - sin^2θ)`
APPEARS IN
RELATED QUESTIONS
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
If sec θ = `25/7`, then find the value of tan θ.
Choose the correct alternative:
cos 45° = ?