English

Choose the correct alternative: cos 45° = ? - Geometry Mathematics 2

Advertisements
Advertisements

Question

Choose the correct alternative:

cos 45° = ?

Options

  • sin 45°

  • sec 45°

  • cot 45°

  • tan 45°

MCQ

Solution

sin 45°

cos 45° = `1/sqrt2`, sin 45° = `1/sqrt2`

∴ cos 45° = sin 45°.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.1 (A)

APPEARS IN

RELATED QUESTIONS

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


(secA + tanA) (1 − sinA) = ______.


Prove the following trigonometric identities.

`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Prove the following identities:

`1 - cos^2A/(1 + sinA) = sinA`


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


Prove the following identity :

`tan^2A - sin^2A = tan^2A.sin^2A`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


Choose the correct alternative:

sec 60° = ?


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


If tan θ = `x/y`, then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×