English

If sec θ + tan θ = 3, complete the activity to find the value of sec θ – tan θ Activity: □ = 1 + tan2θ ......[Fundamental trigonometric identity] □ – tan2θ = 1 (sec θ + tan θ) . (sec θ – tan θ) = □ - Geometry Mathematics 2

Advertisements
Advertisements

Question

If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`

Fill in the Blanks
Sum

Solution

sec2θ = 1 + tan2θ    ......[Fundamental trigonometric identity]

sec2θ – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = 1

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `1/sqrt(3)` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.2 (A)

RELATED QUESTIONS

Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities

`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


Prove the following identity :

`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`


Evaluate:

`(tan 65^circ)/(cot 25^circ)`


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


Choose the correct alternative:

`(1 + cot^2"A")/(1 + tan^2"A")` = ?


Prove that cot2θ × sec2θ = cot2θ + 1


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×