Advertisements
Advertisements
Question
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ
Solution
LHS = (sin θ + cos θ)(cosec θ – sec θ)
= `(sin θ + cos θ)(1/sin θ - 1/cos θ)`
= `(sin θ + cos θ)((cos θ - sin θ)/(sin θ * cos θ))`
= `(cos^2θ - sin^2θ)/(sinθ * cosθ)`
= `(1 - 2sin^2θ)/(sinθ*cosθ)`
= `1/(sinθ * cosθ) - (2 sin^2θ)/(sinθ * cosθ)`
= cosec θ · sec θ – 2 tan θ
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that sec2θ − cos2θ = tan2θ + sin2θ