Advertisements
Advertisements
Question
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Solution
LHS = `(cosecA - sinA)(secA - cosA)(tanA + cotA)`
= `(1/sinA -sinA)(1/cosA - cosA)(tanA + 1/tanA)`
= `((1-sin^2A)/sinA)((1 - cos^2A)/cosA)(sinA/cosA + cosA/sinA)`
= `(cos^2A/sinA)(sin^2A/cosA)((sin^2A + cos^2A)/(sinA.cosA))`
= 1
APPEARS IN
RELATED QUESTIONS
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Choose the correct alternative:
sec2θ – tan2θ =?
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
If tan θ = `x/y`, then cos θ is equal to ______.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.