Advertisements
Advertisements
Question
Choose the correct alternative:
sec2θ – tan2θ =?
Options
0
1
2
`sqrt(2)`
Solution
1
1 + tan2θ = sec2θ
∵ sec2θ – tan2θ = 1.
APPEARS IN
RELATED QUESTIONS
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Prove that sec2θ – cos2θ = tan2θ + sin2θ
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If 2sin2β − cos2β = 2, then β is ______.
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`