Advertisements
Advertisements
Question
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Solution
`(cotA + cosecA - 1)/(cotA - cosecA + 1)`
= `(cotA + cosecA - (cosec^2A - cot^2A))/(cotA - cosecA + 1)` [`cosec^2A - cot^2A = 1`]
= `(cotA + cosecA - [(cosecA - cotA)(cosecA + cotA)])/(cotA - cosecA + 1)`
= `(cotA + cosecA[1 - cosecA + cotA])/(cotA - cosecA + 1)`
= `cotA + cosecA`
= `cosA/sinA + 1/sinA`
= `(1 + cosA)/sinA`
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
sin(45° + θ) – cos(45° – θ) is equal to ______.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.