Advertisements
Advertisements
Question
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Solution
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
LHS = `sinθ(1 + tanθ) + cosθ(1 + cotθ)`
= `sinθ (1 + sinθ/cosθ) + cosθ (1 + cosθ /sinθ)`
= `sinθ((cosθ + sinθ)/cosθ) + cosθ((sinθ + cosθ)/sinθ)`
= `cosθ + sinθ(sinθ /cosθ + cosθ /sinθ)`
= `cosθ + sinθ (1/sinθ 1/cosθ) = secθ + cosecθ `
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1