Advertisements
Advertisements
Question
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Solution
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))`
= `sqrt((secq - 1)/(secq + 1) . (secq - 1)/(secq - 1)) + sqrt((secq + 1)/(secq - 1) . (secq + 1)/(secq + 1))`
= `sqrt((secq - 1)^2/(sec^2q - 1)) + sqrt((secq + 1)^2/(secq^2 - 1)`
= `sqrt((secq - 1)^2/tan^2q) + sqrt((secq + 1)^2/(tan^2q)` (`Q sec^2q - 1 = tan^2q`)
= `(secq - 1)/tanq + (secq + 1)/tanq = (secq - 1 + secq + 1)/tanq`
= `(2secq)/tanq = (2/cosq)/(sinq/cosq) = 2/sinq = 2cosecq`
APPEARS IN
RELATED QUESTIONS
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Evaluate sin25° cos65° + cos25° sin65°
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Choose the correct alternative:
tan (90 – θ) = ?
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S