English

Prove the Following Identity : √ Sec Q − 1 Sec Q + 1 + √ Sec Q + 1 Sec Q − 1 = 2 Cosesq - Mathematics

Advertisements
Advertisements

Question

Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq

Sum

Solution

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))`

= `sqrt((secq - 1)/(secq + 1) . (secq - 1)/(secq - 1)) + sqrt((secq + 1)/(secq - 1) . (secq + 1)/(secq + 1))`

= `sqrt((secq - 1)^2/(sec^2q - 1)) + sqrt((secq + 1)^2/(secq^2 - 1)`

= `sqrt((secq - 1)^2/tan^2q) + sqrt((secq + 1)^2/(tan^2q)`   (`Q sec^2q - 1 = tan^2q`)

 = `(secq - 1)/tanq + (secq + 1)/tanq = (secq - 1 + secq + 1)/tanq`

= `(2secq)/tanq = (2/cosq)/(sinq/cosq) = 2/sinq = 2cosecq`

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.1 | Q 4.05
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×