Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
उत्तर
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))`
= `sqrt((secq - 1)/(secq + 1) . (secq - 1)/(secq - 1)) + sqrt((secq + 1)/(secq - 1) . (secq + 1)/(secq + 1))`
= `sqrt((secq - 1)^2/(sec^2q - 1)) + sqrt((secq + 1)^2/(secq^2 - 1)`
= `sqrt((secq - 1)^2/tan^2q) + sqrt((secq + 1)^2/(tan^2q)` (`Q sec^2q - 1 = tan^2q`)
= `(secq - 1)/tanq + (secq + 1)/tanq = (secq - 1 + secq + 1)/tanq`
= `(2secq)/tanq = (2/cosq)/(sinq/cosq) = 2/sinq = 2cosecq`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If `secθ = 25/7 ` then find tanθ.
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ