मराठी

Prove the Following Trigonometric Identities Cos^2 a + 1/(1 + Cos^2 A) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identity.

`cos^2 A + 1/(1 + cot^2 A) = 1`

बेरीज

उत्तर

L.H.S. = `cos^2 A + 1/(1 + cot^2 A)`

= `cos^2 A + 1/("cosec"^2 A)        ...[1 + cot^2A = "cosec"^2 A]`

= `cos^2 A + sin^2 A     ...[1/("cosec" A) = sin A]`

= `cos^2 A + sin^2 A`

= 1  (R.H.S.)       ...`[sin^2 A + cos^2A = 1]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 9 | पृष्ठ ४३

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove the following identities:

`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`


Show that : tan 10° tan 15° tan 75° tan 80° = 1


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A


`cosec theta (1+costheta)(cosectheta - cot theta )=1`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


If x sin3θ + y cos3 θ = sin θ cos θ  and x sin θ = y cos θ , then show that x2 + y2 = 1.


Prove that sec2θ – cos2θ = tan2θ + sin2θ


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×