Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
उत्तर
L.H.S. = `cos^2 A + 1/(1 + cot^2 A)`
= `cos^2 A + 1/("cosec"^2 A) ...[1 + cot^2A = "cosec"^2 A]`
= `cos^2 A + sin^2 A ...[1/("cosec" A) = sin A]`
= `cos^2 A + sin^2 A`
= 1 (R.H.S.) ...`[sin^2 A + cos^2A = 1]`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that sec2θ – cos2θ = tan2θ + sin2θ
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.