Advertisements
Advertisements
Question
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Solution
L.H.S. = `cos^2 A + 1/(1 + cot^2 A)`
= `cos^2 A + 1/("cosec"^2 A) ...[1 + cot^2A = "cosec"^2 A]`
= `cos^2 A + sin^2 A ...[1/("cosec" A) = sin A]`
= `cos^2 A + sin^2 A`
= 1 (R.H.S.) ...`[sin^2 A + cos^2A = 1]`
APPEARS IN
RELATED QUESTIONS
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
From the figure find the value of sinθ.
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
(1 – cos2 A) is equal to ______.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0