Advertisements
Advertisements
Question
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Solution
L.H.S. = (sin θ + cos θ)(tan θ + cot θ)
= `(sin theta + cos theta)(sin theta/cos theta + costheta/sin theta)`
= `(sin theta + cos theta)((sin^2 theta + cos^2 theta)/(costhetasin theta))`
= `(sintheta+costheta)xx1/(sinthetacostheta)` ...[∵ sin2θ + cos2θ = 1]
= `(sin theta + cos theta)/(cos theta sin theta)`
= `sin theta/(cos thetasin theta) + cos theta/(cos theta sin theta)`
= `1/cos theta + 1/sin theta`
= `sec theta + cosec theta`
= R.H.S
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
From the figure find the value of sinθ.
What is the value of (1 − cos2 θ) cosec2 θ?
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
If x = a tan θ and y = b sec θ then
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
If sin A = `1/2`, then the value of sec A is ______.