English

Prove that tan(90-θ)+cot(90-θ)cosecθ = sec θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ

Sum

Solution

L.H.S = `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)`

= `1/("cosec"  theta)(cottheta + tantheta)`  .....`[(because tan(90 - theta) = cot theta),(cot(90 - theta) = tantheta)]`

= sin θ (cot θ + tan θ)

= `sintheta ((costheta)/(sintheta) + (sintheta)/(costheta))`

= `sintheta ((cos^2theta + sin^2theta)/(sintheta costheta))`

= `sintheta (1/(sintheta costheta))`   ......[∵ sin2θ  + cos2θ = 1]

= `1/costheta`

= sec θ

= R.H.S

∴ `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.3 (B)

RELATED QUESTIONS

Prove that `cosA/(1+sinA) + tan A =  secA`


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 


If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×