Advertisements
Advertisements
Question
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Solution
LHS = `( tan A + sec A - 1)/(tan A - sec A + 1)`
= `(( tan A + sec A) - (sec^2 A - tan^2 A))/((tan A - sec A) + 1)`
= `(( tan A + sec A)( 1 - sec A + tan A))/(tan A - sec A + 1)`
= tan A + sec A
= `sin A/cos A + 1/cos A = (1 + sin A)/cos A`
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.