Advertisements
Advertisements
प्रश्न
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
उत्तर
LHS = `( tan A + sec A - 1)/(tan A - sec A + 1)`
= `(( tan A + sec A) - (sec^2 A - tan^2 A))/((tan A - sec A) + 1)`
= `(( tan A + sec A)( 1 - sec A + tan A))/(tan A - sec A + 1)`
= tan A + sec A
= `sin A/cos A + 1/cos A = (1 + sin A)/cos A`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to