Advertisements
Advertisements
प्रश्न
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
उत्तर
LHS = `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ))`
LHS = `(sin^2 θ/cos θ). (cos^2 θ/sin θ)`
LHS = sin θ. cos θ
RHS = `1/(tan θ + cot θ)`
RHS = `1/((sin^2 θ + cos^2 θ)/(sin θ. cos θ))`
RHS = `(sin θ. cos θ)/(sin^2 θ + cos^2 θ)`
RHS = sin θ. cos θ
LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Choose the correct alternative:
1 + cot2θ = ?
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B