मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Prove that 1+sinBcos B+cos B1+sinB = 2 sec B - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B

बेरीज

उत्तर

L.H.S = `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")`

= `((1 +sin "B")^2 + cos^2"B")/(cos "B"(1 + sin "B"))`

= `(1 +2sin"B" + sin^2"B" + cos^2"B")/(cos"B"(1 + sin"B"))`    ......[∵ (a + b)2 = a2 + 2ab + b2]

= `(1 + 2sin"B" + 1)/(cos"B"(1+ sin"B"))`   .....[∵ sin2B + cos2B = 1]

= `(2 + 2sin"B")/(cos"B"(1 + sin"B"))`

= `(2(1 + sin"B"))/(cos"B"(1 + sin"B"))`

= `2/"cos B"`

= 2 sec B

= R.H.S

∴ `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.3 (B)

संबंधित प्रश्‍न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Express the ratios cos A, tan A and sec A in terms of sin A.


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Prove the following identity :

`cosec^4A - cosec^2A = cot^4A + cot^2A`


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×