Advertisements
Advertisements
प्रश्न
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
उत्तर
L.H.S = `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")`
= `((1 +sin "B")^2 + cos^2"B")/(cos "B"(1 + sin "B"))`
= `(1 +2sin"B" + sin^2"B" + cos^2"B")/(cos"B"(1 + sin"B"))` ......[∵ (a + b)2 = a2 + 2ab + b2]
= `(1 + 2sin"B" + 1)/(cos"B"(1+ sin"B"))` .....[∵ sin2B + cos2B = 1]
= `(2 + 2sin"B")/(cos"B"(1 + sin"B"))`
= `(2(1 + sin"B"))/(cos"B"(1 + sin"B"))`
= `2/"cos B"`
= 2 sec B
= R.H.S
∴ `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`