Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
उत्तर
L.H.S. = `(costhetacottheta)/(1 + sintheta)`
= `(costhetacottheta)/(1 + sintheta) xx (1 - sintheta)/(1 - sintheta)`
= `(costhetacottheta(1 - sintheta))/(1 - sin^2theta)`
= `(costheta costheta/sintheta(1 - sintheta))/cos^2theta`
= `(1 - sintheta)/sintheta`
= `1/sintheta - 1`
= cosec θ – 1
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
What is the value of 9cot2 θ − 9cosec2 θ?