Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
उत्तर
We have to prove `(cot A + tan B)/(cot B + tan A) = cot A tan B`
Now
`(cot A + tan B)/(cot B + tan A) = (cot A + 1/cot B)/(cot B + 1/cot A)`
`= ((cot A cot B + 1)/cot B)/((cot A cot B +1)/cot A)`
`= cot A/cot B`
`= cot A 1/cot B`
= cot A tan B
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Choose the correct alternative:
Which is not correct formula?
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.