Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
उत्तर
LHS = `(cotA - cosecA)^2`
= `[cosA/sinA - 1/sinA]^2`
= `[(cosA - 1)/sinA]^2`
= `(cosA - 1)^2/sin^2A = (cosA - 1)^2/(1 - cos^2A)`
= `(-(1 - cosA))^2/((1 - cosA)(1 + cosA)) = ((1 - cosA)(1 - cosA))/((1 - cosA)(1 + cosA))`
= `(1 - cosA)/(1 + cosA)`
APPEARS IN
संबंधित प्रश्न
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
Simplify : 2 sin30 + 3 tan45.
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1