Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
उत्तर
`sec^4A - sec^2A = 1/cos^4A - 1/cos^2A`
= `(1 - cos^2A)/cos^4A`
= `sin^2A/cos^4A` [∵ `sin^2A = 1 - cos^2A`]
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
`(1 + cot^2 theta ) sin^2 theta =1`
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If sec θ = `25/7`, then find the value of tan θ.
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)