Advertisements
Advertisements
प्रश्न
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
उत्तर
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A [[ cos A" sin A " ],[-sin A" cos A"]]`
= ` [[sin^2A " - sin A cos A"],[sinA .cos A - sin^2 A ]]+ [[cos^2 A " cos A . sin A"],[ -sinA cos A cos^2 A]]`
` =[[sin^2 A + cos^2 A " - sin A. cos A + cos A . sin A "],[sin A . cos A - sin A . cos A " sin^2 A + cos^2 A]] = [[ 1 0 ] , [ 0 1]]`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Find the value of ( sin2 33° + sin2 57°).
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2