Advertisements
Advertisements
प्रश्न
In a Arithmetic Progression (A.P.) the fourth and sixth terms are 8 and 14 respectively. Find that:
(i) first term
(ii) common difference
(iii) sum of the first 20 terms.
उत्तर १
Let the first term of the sequence is a and the common difference is d.
a4 = a +3d = 8 ...(1)
a6 = a + 5d = 14 ...(2)
- - -
_______________________________
-2d = - 6
d = 3
Put d = 3 in equation (1)
a + 3 × 3 = 8
a = - 1
∴ (i) First term (a) = –1
(ii) Common difference (d) = 3
(iii) Sum of the first 20 terms = Sn `= n/2 [2a + (n-1)d]`
` = 20/2 [2 xx (-1) + 19 xx 3]`
` = 20/2 [-2+57]`
= 10 × 55 = 550
उत्तर २
Let the first term of the sequence is a and the common difference is d.
a4 = a +3d = 8 ...(1)
a6 = a + 5d = 14 ...(2)
- - -
_______________________________
-2d = - 6
d = 3
Put d = 3 in equation (1)
a + 3 × 3 = 8
a = - 1
∴ (i) First term (a) = –1
(ii) Common difference (d) = 3
(iii) Sum of the first 20 terms = Sn `= n/2 [2a + (n-1)d]`
` = 20/2 [2 xx (-1) + 19 xx 3]`
` = 20/2 [-2+57]`
= 10 × 55 = 550
उत्तर ३
Let the first term of the sequence is a and the common difference is d.
a4 = a +3d = 8 ...(1)
a6 = a + 5d = 14 ...(2)
- - -
_______________________________
-2d = - 6
d = 3
Put d = 3 in equation (1)
a + 3 × 3 = 8
a = - 1
∴ (i) First term (a) = –1
(ii) Common difference (d) = 3
(iii) Sum of the first 20 terms = Sn `= n/2 [2a + (n-1)d]`
` = 20/2 [2 xx (-1) + 19 xx 3]`
` = 20/2 [-2+57]`
= 10 × 55 = 550
उत्तर ४
Let the first term of the sequence is a and the common difference is d.
a4 = a +3d = 8 ...(1)
a6 = a + 5d = 14 ...(2)
- - -
_______________________________
-2d = - 6
d = 3
Put d = 3 in equation (1)
a + 3 × 3 = 8
a = - 1
∴ (i) First term (a) = –1
(ii) Common difference (d) = 3
(iii) Sum of the first 20 terms = Sn `= n/2 [2a + (n-1)d]`
` = 20/2 [2 xx (-1) + 19 xx 3]`
` = 20/2 [-2+57]`
= 10 × 55 = 550
उत्तर ५
Let the first term of the sequence is a and the common difference is d.
a4 = a +3d = 8 ...(1)
a6 = a + 5d = 14 ...(2)
- - -
_______________________________
-2d = - 6
d = 3
Put d = 3 in equation (1)
a + 3 × 3 = 8
a = - 1
∴ (i) First term (a) = –1
(ii) Common difference (d) = 3
(iii) Sum of the first 20 terms = Sn `= n/2 [2a + (n-1)d]`
` = 20/2 [2 xx (-1) + 19 xx 3]`
` = 20/2 [-2+57]`
= 10 × 55 = 550
APPEARS IN
संबंधित प्रश्न
Find the sum of all odd numbers between 100 and 200.
Find the sum of first 20 terms of the sequence whose nth term is `a_n = An + B`
The sum of first 9 terms of an A.P. is 162. The ratio of its 6th term to its 13th term is 1 : 2. Find the first and 15th term of the A.P.
The sum of first 20 odd natural numbers is
The sum of first 14 terms of an A.P. is 1050 and its 14th term is 140. Find the 20th term.
Determine the sum of first 100 terms of given A.P. 12, 14, 16, 18, 20, ......
Activity :- Here, a = 12, d = `square`, n = 100, S100 = ?
Sn = `"n"/2 [square + ("n" - 1)"d"]`
S100 = `square/2 [24 + (100 - 1)"d"]`
= `50(24 + square)`
= `square`
= `square`
The first term of an AP of consecutive integers is p2 + 1. The sum of 2p + 1 terms of this AP is ______.
The sum of the first five terms of an AP and the sum of the first seven terms of the same AP is 167. If the sum of the first ten terms of this AP is 235, find the sum of its first twenty terms.
Find the sum of those integers from 1 to 500 which are multiples of 2 as well as of 5.
Which term of the Arithmetic Progression (A.P.) 15, 30, 45, 60...... is 300?
Hence find the sum of all the terms of the Arithmetic Progression (A.P.)