Advertisements
Advertisements
Question
In a Arithmetic Progression (A.P.) the fourth and sixth terms are 8 and 14 respectively. Find that:
(i) first term
(ii) common difference
(iii) sum of the first 20 terms.
Solution 1
Let the first term of the sequence is a and the common difference is d.
a4 = a +3d = 8 ...(1)
a6 = a + 5d = 14 ...(2)
- - -
_______________________________
-2d = - 6
d = 3
Put d = 3 in equation (1)
a + 3 × 3 = 8
a = - 1
∴ (i) First term (a) = –1
(ii) Common difference (d) = 3
(iii) Sum of the first 20 terms = Sn `= n/2 [2a + (n-1)d]`
` = 20/2 [2 xx (-1) + 19 xx 3]`
` = 20/2 [-2+57]`
= 10 × 55 = 550
Solution 2
Let the first term of the sequence is a and the common difference is d.
a4 = a +3d = 8 ...(1)
a6 = a + 5d = 14 ...(2)
- - -
_______________________________
-2d = - 6
d = 3
Put d = 3 in equation (1)
a + 3 × 3 = 8
a = - 1
∴ (i) First term (a) = –1
(ii) Common difference (d) = 3
(iii) Sum of the first 20 terms = Sn `= n/2 [2a + (n-1)d]`
` = 20/2 [2 xx (-1) + 19 xx 3]`
` = 20/2 [-2+57]`
= 10 × 55 = 550
Solution 3
Let the first term of the sequence is a and the common difference is d.
a4 = a +3d = 8 ...(1)
a6 = a + 5d = 14 ...(2)
- - -
_______________________________
-2d = - 6
d = 3
Put d = 3 in equation (1)
a + 3 × 3 = 8
a = - 1
∴ (i) First term (a) = –1
(ii) Common difference (d) = 3
(iii) Sum of the first 20 terms = Sn `= n/2 [2a + (n-1)d]`
` = 20/2 [2 xx (-1) + 19 xx 3]`
` = 20/2 [-2+57]`
= 10 × 55 = 550
Solution 4
Let the first term of the sequence is a and the common difference is d.
a4 = a +3d = 8 ...(1)
a6 = a + 5d = 14 ...(2)
- - -
_______________________________
-2d = - 6
d = 3
Put d = 3 in equation (1)
a + 3 × 3 = 8
a = - 1
∴ (i) First term (a) = –1
(ii) Common difference (d) = 3
(iii) Sum of the first 20 terms = Sn `= n/2 [2a + (n-1)d]`
` = 20/2 [2 xx (-1) + 19 xx 3]`
` = 20/2 [-2+57]`
= 10 × 55 = 550
Solution 5
Let the first term of the sequence is a and the common difference is d.
a4 = a +3d = 8 ...(1)
a6 = a + 5d = 14 ...(2)
- - -
_______________________________
-2d = - 6
d = 3
Put d = 3 in equation (1)
a + 3 × 3 = 8
a = - 1
∴ (i) First term (a) = –1
(ii) Common difference (d) = 3
(iii) Sum of the first 20 terms = Sn `= n/2 [2a + (n-1)d]`
` = 20/2 [2 xx (-1) + 19 xx 3]`
` = 20/2 [-2+57]`
= 10 × 55 = 550
APPEARS IN
RELATED QUESTIONS
How many terms of the AP. 9, 17, 25 … must be taken to give a sum of 636?
Find the sum of all odd natural numbers less than 50.
Which term of the AP 3,8, 13,18,…. Will be 55 more than its 20th term?
The 7th term of the an AP is -4 and its 13th term is -16. Find the AP.
What is the sum of first n terms of the AP a, 3a, 5a, …..
Write an A.P. whose first term is a and the common difference is d in the following.
a = 10, d = 5
Simplify `sqrt(50)`
In an A.P., the first term is 22, nth term is −11 and the sum to first n terms is 66. Find n and d, the common difference
If the first term of an A.P. is 2 and common difference is 4, then the sum of its 40 terms is
Find the sum of first 16 terms of the A.P. whose nth term is given by an = 5n – 3.