Advertisements
Advertisements
Question
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Solution
Taking LHS
(cosec θ - sinθ )(secθ - cos θ ) ( tanθ +cot θ)
`(1/(sin theta )- sin theta )(1/(cos θ )- cosθ )((sin θ)/(cos θ) +(cos θ)/(sin θ))`
`=((1-sin^2 θ)/(sin θ)) ((1- cos ^2θ)/(cos θ)) ((sin^2 θ + cos^2 θ)/(sin θ . cos θ))`
`= (cos^2 θ)/( sin θ) xx (sin^2 θ)/(cos θ ) xx 1/(sinθ . cos θ )` = 1 = RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Given that sin θ = `a/b`, then cos θ is equal to ______.