English

Prove the Following Trigonometric Identities. (Sec a - Tan A)/(Sec a + Tan A) = (Cos^2 A)/(1 + Sin A)^2 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`

Solution

We need to prove  `(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`

Here, we will first solve the LHS.

Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta`, we get

`(sec A - tan A)/(sec A + tan A) = (1/cos A - sin A/cos A)/(1/cos A + sin A/cos A)`

`= ((1 - sin A)/cos A)/((1 + sin A)/cos A)`

`= (1 - sin A)/(1 + sin A)`

Further, multiplying both numerator and denominator by 1 + sin A we get

`(1 - sin A)/(1 + sin A) = ((1 - sin A)/(1 + sin A))((1 + sin A)/(1 =  sin A))`

`= ((1 -sin A)(1 + sin A))/(1 + sin A)^2`

`= (1 s sin^2 A)/(1 + sin A)^2`

Now, using the property `cos^2 theta + sin^2 theta = 1`, we get

So,

`(1 - sin^2 A)/(1 + sin A)^2  = cos^2 A/(1 + sin A)^2`  = RHS.

Hence proved

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 35 | Page 44

RELATED QUESTIONS

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities

tan2 A + cot2 A = sec2 A cosec2 A − 2


Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


Prove that:

2 sin2 A + cos4 A = 1 + sin4


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


Prove that `sec"A"/(tan "A" + cot "A")` = sin A


Statement 1: sin2θ + cos2θ = 1

Statement 2: cosec2θ + cot2θ = 1

Which of the following is valid?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×