Advertisements
Advertisements
Question
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Solution
L.H.S. = `(cot A - 1)/(2 - sec^2A)`
= `(((1 - tan A))/tan A)/(1 + 1 - sec^2A)`
= `(((1 - tan A))/tan A)/(1 - tan^2A)`
= `(((1 - tan A))/(tan A))/((1 + tan A)(1 - tan A))`
= `(1/tan A)/(1 + tan A)`
= `cot A/(1 + tan A)` = R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.