Advertisements
Advertisements
Question
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Solution
L.H.S = `cot^2"A"[(sec"A" - 1)/(1 + sin "A")] + sec^2"A"[(sin"A" - 1)/(1 + sec"A")]`
= `(cot^2"A"(sec"A" - 1)(sec"A" + 1) + sec^2"A"(sin"A" - 1)(sin"A" + 1))/((1 + sin"A")(1 + sec"A"))`
= `(cot^2"A"(sec^2"A" - 1) + sec^2"A"(sin^2"A" - 1))/((1 + sin"A")(1 + sec"A"))`
= `(cot^2"A" xx tan^2"A" + sec^2"A"( - cos^2"A"))/((1 + sin"A")(1 + sec"A"))`
= `(cot^2"A" xx 1/cot^2"A" - sec^2"A" xx 1/sec^2"A")/((1 + sin"A")(1 + sec"A"))`
= `(1 - 1)/((1 + sin"A")(1+ sec"A"))`
= `0/((1 + sin"A")(1 + sec"A"))`
= 0
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.