Advertisements
Advertisements
Question
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Solution
L.H.S = `(tan^2 theta - 1)/(tan^2 theta + 1)`
= `(tan^2 theta - 1)/(sec^2 theta)`
= `(sin^2 theta)/(cos^2 theta) - 1 ÷ 1/(cos^2 theta)`
= `(sin^2 theta - cos^2 theta)/(cos^2 theta) xx (cos^2 theta)/1`
= sin2θ − cos2θ
= 1 − cos2θ − cos2θ
= 1 – cos2θ
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
RELATED QUESTIONS
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
Choose the correct alternative:
1 + cot2θ = ?
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`