Advertisements
Advertisements
Question
`cot^2 theta - 1/(sin^2 theta ) = -1`a
Solution
LHS = `cot^2 theta - 1/ (sin^2 theta)`
= `(cos^2 theta )/(sin^2 theta) - 1/(sin^2 theta)`
=`(cos^2 theta -1)/(sin^2 theta)`
=` (- sin^2 theta )/(sin ^2 theta)`
= -1
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
If cos θ = `24/25`, then sin θ = ?
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
(1 – cos2 A) is equal to ______.