Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Solution
In the given question, we need to prove `((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Taking `sin theta` common from the numerator and the denominator of the L.H.S, we get
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (((sin theta)(cosec theta + 1 -cot theta))/((sin theta)(cosec theta + 1 + cot theta)))^2`
`= ((1 + cosec theta - cot theta)/(1 + cosec theta + cot theta))^2`
Now, using the property `1 + cot^2 theta = cosec^2 theta` we get
`((1 + cosec theta - cot theta)/(1 + cosec theta + cot theta))^2 = (((cosec^2 theta - cot^2 theta) +cosec theta - cot theta)/(1 + cosec theta + cot theta))^2`
Using `a^2 - b^2 = (a + b)(a - b) we get
`(((cosec^2 theta - cot^2 theta)(cosec theta - cot theta))/(1 + cosec theta + cot theta))^2 = (((cosec theta - cot theta)(cosec theta + cot theta + 1))/(1 + cosec theta + cot theta))^2`
`= (cosec theta - cot theta)^2`
Using `cot theta = cos theta/sin theta` and `cosec = 1/sin theta` we get
`(cosec theta - cot theta)^2 = (1/sin theta - cos theta/sin theta)^2`
`= ((1 - cos theta)/sin theta)^2`
Now, using the property `sin^2 theta + cos^2 theta = 1` we get
`(1 - cos theta)^2/sin^2 theta = (1 - cos theta)/(1 - cos^2 theta)`
`= (1 - cos theta)^2/((1 + cos theta)(1 - cos theta))`
`= (1 - cos theta)/(1 + cos theta)`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Show that tan4θ + tan2θ = sec4θ – sec2θ.