English

A Moving Boat is Observed from the Top of a 150 M High Cliff Moving Away from the Cliff. the Angle of Depression of the Boat Changes from 60° to 45° in 2 Minutes. Find the Speed of the Boat in M/Min. - Mathematics

Advertisements
Advertisements

Question

A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.

Sum

Solution


Let AO be the cliff of height 150 m.
Let the speed of the boat be x meters per minute.
And BC is the distance which man travelled.

So, BC = 2x         ....[ ∵Distance = Speed x Time ]

tan(60°) = `"AO"/"OB"`

`sqrt3` = `150/"OB"`

⇒ OB = `(150sqrt3)/3` = `50sqrt3`

tan(45°) = `"AO"/"OC"`

⇒1 = `150/"OC"`

⇒ OC = 150
Now OC = OB + BC

⇒ 150 = `50sqrt3` + 2x

⇒ x = `(150 − 50sqrt3)/2`

⇒ x = 75 − `25sqrt3`

Using `sqrt3 = 1.73`
x = 75 − 25 x 1.732 ≈ 32 m/min 
Hence, the speed of the boat is 32 metres per minute.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 30/4/3

RELATED QUESTIONS

Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove the following identity : 

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×