Advertisements
Advertisements
प्रश्न
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
उत्तर
Let AO be the cliff of height 150 m.
Let the speed of the boat be x meters per minute.
And BC is the distance which man travelled.
So, BC = 2x ....[ ∵Distance = Speed x Time ]
tan(60°) = `"AO"/"OB"`
`sqrt3` = `150/"OB"`
⇒ OB = `(150sqrt3)/3` = `50sqrt3`
tan(45°) = `"AO"/"OC"`
⇒1 = `150/"OC"`
⇒ OC = 150
Now OC = OB + BC
⇒ 150 = `50sqrt3` + 2x
⇒ x = `(150 − 50sqrt3)/2`
⇒ x = 75 − `25sqrt3`
Using `sqrt3 = 1.73`
x = 75 − 25 x 1.732 ≈ 32 m/min
Hence, the speed of the boat is 32 metres per minute.
संबंधित प्रश्न
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
` tan^2 theta - 1/( cos^2 theta )=-1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
tan θ cosec2 θ – tan θ is equal to
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If sin A = `1/2`, then the value of sec A is ______.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.