Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
उत्तर
We know `sin^2 A + cos^2 A = 1`
`sin^2 A = 1 - cos^2 A`
`=> sin^2 A . cosec^2 A`
`=> sin^2 A . 1/(sin^2 A) = 1`
∴ L.H.S = R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.