Advertisements
Advertisements
प्रश्न
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
उत्तर
Given:
`sin ^2θ cos^2 θ(1+tan^2 θ)(1+cot ^2θ)=λ`
`⇒ sin^2θ cos^2 θ sec^2 θ cosec^2θ=λ`
⇒`(sin^2 θ cosec^2θ )xx (cos^2θ sec^2 θ)= λ`
⇒ `(sin^2θ xx 1/sin^2θ )(cos^2 θxx1/cos^2θ)=λ`
\[\Rightarrow \lambda = 1 \times 1 = 1\]
APPEARS IN
संबंधित प्रश्न
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
` tan^2 theta - 1/( cos^2 theta )=-1`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
Given that sin θ = `a/b`, then cos θ is equal to ______.