हिंदी

Prove that 1+sinθ1-sinθ = (sec θ + tan θ)2 - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 

योग

उत्तर

L.H.S = `(1 + sintheta)/(1 - sin theta)`

= `((1 + sintheta)/(costheta))/((1 - sintheta)/(costheta))`  ......[Dividing numerator and denominator by cos θ]

= `(1/costheta + (sintheta)/(costheta))/(1/costheta - (sintheta)/(costheta)`

= `(sectheta + tantheta)/(sectheta - tantheta)`

= `(sectheta + tantheta)/(sectheta - tantheta) xx (sectheta + tantheta)/(sectheta + tantheta)` ......[On rationalising the denominator]

= `(sectheta + tantheta)^2/(sec^2theta - tan^2theta)`

= `(sectheta + tantheta)^2/1`   ......`[(because 1 + tan^2theta = sec^2theta),(therefore sec^2theta - tan^2theta = 1)]`

= (sec θ + tan θ)2

= R.H.S

∴ `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.3 (B)

संबंधित प्रश्न

Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A


If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Find the value of ( sin2 33° + sin2 57°).


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


Choose the correct alternative:

sec 60° = ?


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×