Advertisements
Advertisements
प्रश्न
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
उत्तर
L.H.S = `(1 + sintheta)/(1 - sin theta)`
= `((1 + sintheta)/(costheta))/((1 - sintheta)/(costheta))` ......[Dividing numerator and denominator by cos θ]
= `(1/costheta + (sintheta)/(costheta))/(1/costheta - (sintheta)/(costheta)`
= `(sectheta + tantheta)/(sectheta - tantheta)`
= `(sectheta + tantheta)/(sectheta - tantheta) xx (sectheta + tantheta)/(sectheta + tantheta)` ......[On rationalising the denominator]
= `(sectheta + tantheta)^2/(sec^2theta - tan^2theta)`
= `(sectheta + tantheta)^2/1` ......`[(because 1 + tan^2theta = sec^2theta),(therefore sec^2theta - tan^2theta = 1)]`
= (sec θ + tan θ)2
= R.H.S
∴ `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Find the value of ( sin2 33° + sin2 57°).
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Choose the correct alternative:
sec 60° = ?
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ