Advertisements
Advertisements
प्रश्न
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
उत्तर
Given cot θ + tan θ = x and sec θ – cos θ = y
x = cot θ + tan θ
x = `1/tan theta + tan theta`
= `(1 + tan^2 theta)/tan theta`
= `(sec^2 theta)/tan theta`
= `(1/cos^2theta)/(sin theta/costheta`
= `1/(cos theta sin theta)`
y = sec θ – cos θ
= `1/cos theta - cos theta`
= `(1 - cos^2 theta)/cos theta`
y = `(sin^2 theta)/costheta`
= `[1/(cos^2thetasin^2theta) xx (sin^2theta)/costheta]^(2/3) - [1/(cos theta sin theta) xx (sin^4 theta)/(cos^2 theta)]^(2/3)`
= `[1/(cos^3theta)]^(2/3) - [(sin^3 theta)/(cos^3 theta)]^(2/3)`
= `[1/(cos^2 theta)] - [(sin^2 theta)/(cos^2 theta)]`
= `[(1 - sin^2 theta)/(cos^2 theta)]`
= `[(cos^2 theta)/(cos^2 theta)]`
= 1
L.H.S = R.H.S
⇒ `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.